
The Role of AI-augmented
Coding in Accelerating
Application Modernization
Driving faster, safer transformation with
software that can write software

White paper

© Copyright Diffblue Ltd 2022 White paper | The Role of AI-augmented
Coding in Accelerating

Application Modernization

2Find out more at diffblue.com

Introduction

Application modernization is on the agenda of many IT leaders today, and with good reason: as
software becomes an ever more integral driver of business success, more modern approaches to
design, architecture and operation yield tangible benefits.

A risky business

But despite the considerable upside, application modernization is
also time-consuming, risky and comes with a high opportunity cost:
developers working on modernization have less time to spend building
new capabilities. The risk of change is particularly high where the code
is fragile, hard to understand, poorly documented and poorly tested -
unfortunately exactly the state of many enterprise applications in use
today.

The good news is that cutting-edge AI-augmented coding tools can
now autonomously write entire unit test suites that significantly reduce
developer effort, help with code understanding and reduce risk by
catching regressions as the app is updated.

What is application modernization?

The term ‘application modernization’ covers a range of scenarios,
including breaking down legacy code monoliths, refactoring for API-
driven microservices, moving to a cloud-native architecture, or upgrading
to a new language version and the latest functionality. Some teams may
just see it as a process of improving how they work through adoption of
automation and CI/CD. Whatever the context, application modernization
is an important goal for many enterprises.

https://www.diffblue.com/

© Copyright Diffblue Ltd 2022 White paper | The Role of AI-augmented
Coding in Accelerating

Application Modernization

3Find out more at diffblue.com

But It Was Working Yesterday!

One of the key pain points in application modernization is avoiding
regressions or “breaking” the current functionality of the code. This
problem is compounded by the length and complexity of integration and
functional testing cycles – breakages are often not found until late in the
process, and it is slow, difficult work to triage bugs and identify the root
cause.

Unit testing offers a way to spot regressions much earlier in development,
at the time the code is being worked on by the developer. But too many
codebases lack good unit test coverage. Writing enough unit tests can
look like an insurmountable mountain to climb in even moderately-sized
codebases because of the sheer volume required to get good coverage.
Large legacy applications – with perhaps hundreds of thousands, or even
millions, of lines of code – present a truly daunting task.

Writing a suite of unit tests for an existing code base means the
developer has to study the code to try to identify what it does, and
then write a set of tests to an unwritten specification – often without
knowing boundary conditions and subtle-but-important behaviors. To
isolate the unit test and ensure it runs quickly, realistic mocking has to be
implemented too.

The net: how the code behaves today becomes the specification for the
unit tests. However, that’s not all: negative tests also need to be written,
and these are harder simply because it’s more difficult for us humans to
think about failing cases. All these things mean that writing useful unit
tests can be a formidable challenge.

Diffblue’s “rule of thumb” based on experience with customer codebases
and open source projects is that you need one unit test for every 15-18
lines of code – so a 15,000 line project might need 1000 tests. If it takes
15 minutes on average to write, check and finalize a unit test, that’s 250
hours of work – and then the tests have to be updated and re-checked as
the code evolves.

https://www.diffblue.com/

© Copyright Diffblue Ltd 2022 White paper | The Role of AI-augmented
Coding in Accelerating

Application Modernization

4Find out more at diffblue.com

Software Can Now Write Software

AI-powered coding tools are changing the narrative for large scale,
tedious, error-prone software development like unit testing. The
essential idea is that developers don’t have to write 100% of software
by themselves. Past efforts at auto-generated coding were crude,
mechanical, simplistic and developers hated them. But technology that
started out in world-leading AI research groups can now write code to the
same standard as a human developer.

There are two main AI code-writing techniques today: large language
predictive models trained on open source codebases, used by tools like
GitHub Copilot, and reinforcement-learning algorithms like Diffblue Cover
that use the same approach as game-winning AI.

These techniques have very different goals, however. Large language
models produce fragments of code for human developers to review,
using existing code and/or comments as a “prompt” to predict the code
that follows. Since these models can’t evaluate the code they produce
– only a human can do that - they typically offer several completion
options for a developer to choose from.

This approach is particularly useful for coding tasks that are time-
consuming and exacting, but not especially complicated. Examples
include “boilerplate” code such as a Class definition in Java, or calling
an unfamiliar API (do you remember all the S3 bucket options?). The
advantage is that offering these chunks of code in a few seconds is a lot
faster than typing it yourself, visiting StackOverflow or Googling to find
some example code and adapting it.

Large language models are an exciting new development, but come
with some disadvantages. It’s incumbent on the developer to check the
predicted code is logically correct and reject erroneous completions
that don’t satisfy the required intent – and perhaps even more crucially,
to spot errors and potential vulnerabilities. As the name suggests, large
language models work on word associations and context – they don’t
code for logic and arithmetic, and it’s easy to prompt them into making
arithmetic errors.

There’s an important reason why GitHub describes this process as
automated pair programming: using the tool interactively and with a
critical eye is important – it won’t work autonomously.

Complicating matters further, the 175 billion parameter predictive model
behind Copilot means your code has to be sent to GitHub’s Codex
cloud service for processing - that’s what allows it to quickly return a
completion. For many enterprises, sending any code to a 3rd party is an
unacceptable security risk, though there are alternatives like TabNine that
offer locally-hosted models instead.

https://www.diffblue.com/

© Copyright Diffblue Ltd 2022 White paper | The Role of AI-augmented
Coding in Accelerating

Application Modernization

5Find out more at diffblue.com

Autonomous Unit Test Writing

In contrast to large language models Diffblue Cover uses reinforcement
learning, from the unsupervised learning branch of the AI tree, to
autonomously write unit tests. Instead of being pre-trained on a large
amount of open source code, the learning happens in real time as the
model searches the space of possible test programs, following promising
trajectories and finding the best possible solution in the time available.

Diffblue Cover writes each unit test by evaluating existing code at a
method level and guessing what a good test would be. It then runs the
proposed test against the method, evaluates the coverage (how much
of the code the test exercises) and other qualities of the test, and then
predicts which changes to the test will trigger additional branches to
produce higher coverage. Then it repeats these steps until it has found
the best test(s) in the time available (around a second).

This is known as “probabilistic search”: a technique where the space
of potential solutions is sampled, and the algorithm spends more time
searching regions with a greater probability of a good solution.

The return value(s) of the search, and any side effects that were
observed, are used to write assertions on a method’s behavior – because
it’s no good having good code coverage if the tests don’t check what
the code did. The result is a test that is known to work (Cover ran it) and
produces specific coverage and assertion checks.

By repeating this for all methods in the code, Diffblue Cover
autonomously produces an entire suite of unit tests that reflect the
current behavior of the program – just what we know we need for
an application modernization project. Any failures of these Diffblue
tests identify changes in behavior of the code and a risk of potential
regressions. Where the change is intentional and correct, the developer
can immediately get replacement tests from Cover without re-creating
the entire suite by asking the tool to rewrite only the tests affected by the
code diff.

Because Cover knows which tests will reach the code that is being
changed, it can also increase the speed and reduce the cost of CI by
running just the tests that matter for that PR. Faster feedback from CI
runs delivers a big productivity gain: developers can fit more debug
cycles in a day, which means faster project completion.

Probabilistic searches cannot guarantee they will find the best solution –
or any solution – because by design they don’t evaluate every possible
case. But you don’t get gibberish or an incorrect result in that situation:
you know when you’ve failed! This makes reinforcement learning a more
suitable approach than large language models for fully automated
test-writing because it won’t write tests that give you false confidence or
cause your pipeline to fail.

https://www.diffblue.com/

© Copyright Diffblue Ltd 2022 White paper | The Role of AI-augmented
Coding in Accelerating

Application Modernization

6Find out more at diffblue.com

Extending the Power of Unit Testing in Application Modernization

In application modernization, Diffblue Cover can use existing code to
write an entire suite of unit tests for very large applications – or large
groups of projects – in a matter of hours. Cover Reports can then
visualize the current state of unit testing across all projects. It shows you
the coverage written by Diffblue, coverage from any human-written unit
tests, where there is overlap, which code isn’t being tested, and what
code is untestable and high complexity. Cover Reports allows you to drill
down from a top-level overview to individual Java classes to ensure that
development teams can focus effort on high risk areas.

The untestable code highlighted by Cover Reports is a common problem.
Two main causes are an inability to call internal methods in a class, and
the lack of observer methods that allow tests to make assertions on
the state changes made by the code. To solve this problem Diffblue has
introduced Refactor, which can determine when observability problems
occur and automatically add the missing code to the classes via
autonomous refactoring. The project can then be recompiled and Cover
re-run to write more tests.

The coverage challenge presented by data-driven applications, where the
flow of control and data structures are not known until runtime, presents
a further source of risk during modernization. For example, at one
investment bank Diffblue came across an application where the definition
of the financial transaction being processed is fed into the application
at runtime. Typically these applications are tested via integration and
functional tests with hand-crafted synthetic data.

The challenge when writing unit tests for such behavior is that there’s
little in the program to use to write useful tests – all the interesting stuff
happens at runtime. A feature of Diffblue Cover called Replay solves for
this case. A small agent records data flowing through an application while
it is running integration or functional tests; the recording can then be used
by Cover to automatically convert those slow functional tests into fast
unit tests that run much earlier in the development process.

Cover Reports Cover Replay
Identify opportunities
for test improvement

Improve coverage on
data-driven projects

Cover Core Cover Refactor Cover Optimize
Bulk write tests Fix untestable code to

increase coverage
Cut CI time in half

Java application modernization projects might last months or even years.
Diffblue Cover provides a range of AI-powered features that support the fast,

effective unit testing essential to success.

https://www.diffblue.com/

© Copyright Diffblue Ltd 2022 White paper | The Role of AI-augmented
Coding in Accelerating

Application Modernization

7Find out more at diffblue.com

Summary

Unit tests are vital to the success of application modernization projects –
they’re the most fundamental way of ensuring that what works today will
work tomorrow, whether that’s in new infrastructure, a new application
architecture or a new language version.

But achieving the unit test coverage you need can seem like a mountain
to climb. A significant amount of developer effort is needed not only to
write the tests, but to work out what they should do in the first place.

Diffblue Cover is a tool for AI-augmented development that
autonomously writes unit tests for Java applications and can produce
useful coverage in a matter of hours. Cover’s reporting dashboard allows
team leaders to see where they are in terms of coverage and risk, and
prioritize work to address coverage gaps and high risk code. Cover
Refactor can autonomously refactor code to make it more testable.
Cover Optimize dramatically reduces CI cycle times, providing developers
with much faster feedback. Cover Replay can shift left functional tests
and incorporate them into your unit test suite.

To learn more about Diffblue Cover visit www.diffblue.com/products

https://www.diffblue.com/
http://www.diffblue.com/products

About Us
Diffblue is the leading pioneer of software creation through the power of AI. Founded by researchers from the University of Oxford,
Diffblue Cover uses AI for Code to solve the problem of effective unit testing. Capable of writing unit tests 250x faster than a human
developer, Cover helps software teams improve code quality, expand test coverage and increase productivity, so they can ship
software faster, more frequently, with fewer defects.

To find out more visit diffblue.com

v1 151122

